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A phase-plane method is used to study the existence of similarity solutions of the 
two-dimensional and axisymmetric shallow-water equations representing gravity 
currents with volumes proportional to P, where a 2 0 and t is the time after the flow 
is initiated. Only currents for which there is a balance between the inertia of the 
current and the driving buoyancy force are considered. It is found that similarity 
solutions exist for the two-dimensional problem for all a 2 0, with some restrictions 
on the condition at  the current front. It is shown that no similarity solutions 
satisfying the boundary conditions on the axis of symmetry exist for the axi- 
symmetric problem except when a = 0. 

1. Introduction 
When a storage tank or pipeline containing a heavier-than-air gas is punctured or 

ruptured, its contents may form a gravity curre& that spreads horizontally along 
the ground. To assess the risks associated with the accidental release of toxic or 
flammable heavy gases, it is necessary to be able to estimate how rapidly this gravity 
current spreads. The spreading rate depends on the external flow, the surrounding 
terrain and the release conditions. Large-scale trials on the motion and dispersion 
of a cloud of heavy gas have been carried out recently at Thorney Island, UK as part 
of the UK Health and Safety Executive’s research programme on the atmospheric 
dispersion of heavy gases, McQuaid (1985). Of particular interest in the present paper 
is how the spreading rate depends on the release conditions when the release occurs 
on a flat surface and in a calm environment. 

Gravity currents, which are gravity-driven flows that consist of a fluid of one 
density moving into a fluid of a different density, are a common feature of many 
natural and industrial situations. Numerous examples and the basic theory of gravity 
currents are reviewed by Simpson (1982). Most laboratory and theoretical studies 
have concentrated on the spreading behaviour of gravity currents produced by the 
instantaneous release of a fixed volume of heavy fluid. This corresponds to a situation 
when the sides of a storage tank rapidly collapse releasing all of its contents a t  once. 

t Present address: Fluid Modelling Facility MD-81, Atmospheric Sciences Research Laboratory, 
lJnited States Environmental Protection Agency, Research Triangle Park, NC 271 1 ,  USA. 
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A more realistic situation is when the contents of a tank or pipeline are released over 
a period of time a t  a variable rate, due to, for example, a small puncture. 

The spreading behaviour of gravity currents produced by the instantaneous release 
of a fixed volume of salt water in fresh water has been studied recently in the 
laboratory by Simpson & Britter (1979), Huppert & Simpson (1980) and Rottman 
& Simpson (1983,1984). They found that if viscous effects remain unimportant then 
eventually the horizontal length of the gravity current becomes proportional to  
t 2 / ( n + 3 ) ,  where n = 0 for plane, n = 1 for axisymmetric geometry and t is the time after 
release. This type of behaviour is exhibited by the similarity solutions of the 
depth-averaged shallow-water equations derived by Fannelop & Waldman (1972) and 
Hoult (1972) (when the motion is determined by a balance between the inertia of the 
gravity current and the driving buoyancy force). Grundy & Rottman (1985) show 
that these similarity solutions are stable to linear perturbations and that they are 
indeed the large-time limit of the solution of the initial-value problem. They also show 
that  the perturbations decay as t -y ,  where y = t for plane flow and y x 2 for 
axisymmetric flow. 

The large-time spreading rate of gravity currents whose volumes increase with time 
have been studied by a few investigators, but the results are not as complete as those 
for fixed-volume currents. 

For the case of plane geometry, Maxworthy (1983) performed a series of experiments 
in which he pumped salt water at a variable rate into a parallel-sided channel filled 
with fresh water. The pumping was controlled so that  the volume of salt water in 
the tank was proportional to  ta, where $ < a < 3. I n  those experiments in which 
viscous effects were unimportant, he observed that the length of the current 
eventually became proportional to  ti("+2). This is the expected spreading behaviour 
based on dimensional analysis when it  is assumed that the motion of the current is 
self-similar. These results imply that a similarity solution of the shallow-water 
equations may exist for this problem, but to  our knowledge nobody has attempted 
to determine such a solution when a > 0 (except for the trivial solution when a = 1 
where Britter (1979) noted that the speed and depth of the current are independent 
of the longitudinal coordinate). 

For the case of axisymmetric geometry, Britter (1979) performed laboratory 
experiments in which salt water was pumped a t  a constant rate (a = 1)  into a 
sector-shaped tank filled with fresh water. He reported that when viscous effects were 
unimportant the radius of the current was proportional to d, which is the expected 
spreading rate when the current motion is assumed self similar. Britter also attempted 
to determine the similarity solutions to  the shallow-water equations for this problem, 
but he was unable to  find an analytic solution and suggested that numerical 
techniques may have to  be used. Chen (1980) attempted to determine the similarity 
solution numerically and discovered a singularity. He argued that the appearance 
of this singularity implies that  the physical flow will take the form of a succession 
of expanding concentric rings with the radius of each ring proportional to  ti, although 
his reasons for drawing this conclusion are not particularly clear. Garvine (1984) 
solved an initial-value problem for this flow numerically. His computed solutions 
show a single ring structure forming a t  the outer edge of the current whose radius 
is proportional to In addition, Garvine presents physically plausible arguments 
for modifying his numerical procedure such that a succession of rings are produced. 
R. E. Britter (private communication) observed multiple rings in his sector-shaped 
tank experiments. All these results leave us in a bit of a dilemma. Chen's singular 
similarity solution does not appear to be the large-time limit of the initial-value 
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FIGURE 1. Schematic illustration of a heavy fluid with density p spreading along a horizontal 
surface through a lighter fluid of density pa. 

problem, since his spreading rate does not agree with Garvine’s numerical results, 
but it nevertheless seems to agree with Britter’s experimental results. 

More recently, Ivey & Blake (1985) have reinterpreted Britter’s data to account 
for some of the details of the experimental arrangement. Their replotted points 
indicate that the radius of the current is initially proportional to and later on 
(presumably when viscous effects become important) proportional to t o e 6 ’ .  The 
implication is that Britter’s data does not support the self-similar solution of the 
shallow-water equations, although they caution that more careful experiments need 
to be done before any definite conclusions can be drawn. It is intriguing that this 
reinterpretation of Britter’s experimental measurements gives results for the radius 
of the current when viscous effects are unimportant that are quite close to  those of 
Garvine’s numerical calculations. 

In the present paper we study more closely the existence and uniqueness of 
similarity solutions of the depth-averaged shallow-water equations for the variable 
inflow problem where the volume of the current is proportional to to: (with a 2 0). 
We restrict our investigation to those flows for which there is a balance between the 
inertia of the current and the buoyancy force driving the current. Our approach is 
to use the phase-plane method developed in the context of gasdynamics by Guderley 
(1942), Courant & Friedrichs (1948) and Sedov (1959). We find that under certain 
conditions unique similarity solutions exist for the plane flow case for all a 2 0, but 
that no similarity solutions exist in the axisymmetric case that satisfy the boundary 
condition at the axis of symmetry, except when a = 0. We also investigate the 
singular similarity solution found by Chen (1980) and show that the singular 
behaviour is spurious. 

The problem is formulated in $2. The phase-plane analysis for the similarity 
solutions is developed in $3 : the plane-flow (n = 0) case in $ 3.1 and the axisymmetric- 
flow (n = 1) case in $3.2. In  $4 we summarize the results and discuss their physical 
implications and relation to previous work. 

2. The equations and boundary conditions 
We consider the motion, in both plane and axisymmetric geometries, of a current 

of density p intruding into a fluid of slightly lower density pa (figure 1). The fluid in 
the current is introduced at the origin at some prescribed rate and flows away along 
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a horizontal boundary, driven by the buoyancy force due to gravity and the difference 
in density between the two fluids. The fluids are taken to be incompressible, the depth 
of the lighter fluid is taken to be much greater than the thickness of the current, and 
any mixing between the two fluids is ignored. 

We are concerned primarily with the behaviour of the current at  large times after 
initiation, so we assume that the current’s length (or radius, in axisymmetric flow) 
is much greater than its thickness. Then, if viscous effects are unimportant, the 
motion of the current can be modelled by the shallow-water equations, which in the 
Boussinesq approximation are 

ah ah au uh 
- + u - + h - + n -  = 0, 
at ax ax 

au au ah 
-+u-+g’- = 0, 
at ax ax 

Where h(x,  t )  is the thickness of the current, u ( x ,  t )  is the depth-averaged horizontal 
fluid speed in the current and g’ = g(p -pa) /pa  is the reduced acceleration due to 
gravity. The independent variable 2 represents the horizontal coordinate in plane flow 
and the radial coordinate in axisymmetric flow, and t measures the time after the 
flow is initiated. The parameter n is 0 for plane flows and 1 for axisymmetric flows. 
For the interested reader a derivation of these equations is given, for example, in 
Penney & Thornhill (1952). 

We impose the boundary conditions 
d 
dt 

lim [ ( 2 x ~ ) ~  uh] = - (qa t“), 
2 4  

u(x, ,  t )  = q t ) ,  (2.4) 

Pg’h(x,,  t )  = {WY, (2.5) 

where x,(t) denotes the position of the current front, k f ( t )  its speed and /9 is an 
empirically determined constant. 

The given parameters a (a 2 0) and qa (qa > 0) and boundary conditions (2.3) 
specify the volume input to the flow a t  the origin, and together with (2.4) determine 
the volume Q of the current as a function of time. To see this we integrate (2.1) with 
respect to x over [0, xn(t)]. Using (2.4) we find that 

Zf(t) 
( 2 7 ~ ~ ) ~  h(x,  t )  dx = lim [ ( 2 x ~ ) ~  uh].  

2+0 dt - dt 

Hence (2.3) gives, to within an arbitrary constant, 

Q ( t )  = qa p. (2.7) 

Note that in plane geometry Q is more precisely the volume per unit width and 
therefore that qa has dimensions that depend on n and a. The requirement a > 0 
ensures that the current volume does not decrease with time, but the volume flux 
at the origin decreases or increases according to whether a >< 1. 

Boundary condition (2.5) implies a quasi-steady balance between the buoyancy 
force driving the current front and the drag due to the acceleration of the surrounding 
fluid around the front. Physical reasoning and experimental measurements suggest 
that the parmeter /3 has a value near unity for gravity currents with small values 
of (p-p,)/p,. This type of boundary condition has been used by most previous 
modellers of gravity currents. 
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In  this paper we are primarily concerned with similarity solutions of the governing 
equations and their possible role as a model for the experimental situation. Bearing 
in mind our experience with the case a = 0, where we showed that the similarity 
solution is the large-time limit of the solution of the initial-value problem, we expect 
such solutions to be similarly valid for a > 0. 

3. The similarity solutions 
Dimensional analysis shows that the similarity solution of ( 2 4 4 2 . 5 )  has the form, 

q ( t )  = (g’qa)l/(3+n) tyf, 
where 5 = (g’q )-1/(3+n) zt-6 

a 

is the similarity variable and 
2 + a  a=- 
3 + n ’  (3.5) 

The parameter Sf is the value of 5 at x = zf(t). We have defined two sets of 
dimensionless functions H, U and 2, V which are related via 

H(5)  = ~2ez(c), (3.6) 

and U(6)  = &m)* (3.7) 

Although the functions H and U have the advantage that their profile shapes are 
similar to those of h and u, the functions Z and V are more convenient from a 
mathematical viewpoint. 

Substituting (3.1)-(3.4) into (2.1) and (2.2) we find that the functions Z(5) and V ( 5 )  
satisfy 

(3.8) 
dZ-  Z { ( l - V ) [ 2 ( V - p ) + ( n + l )  V J + V ( V - p ) + 2 2 }  
dV- { v ( v - ~ )  (1 - V ) + Z [ ( n +  1) ~ - 2 ( 1  -p ) ] }  

and 

where p = 1 / S .  The boundary conditions (2.3)-(2.5) become respectively 

lim ( ( 2 7 ~ 5 ) ~  a33YJ V Z }  = a, 
5-0 

V(5d = 1 ,  

P”Z(5f) = 1. 

The volume-integral condition (2.6) becomes 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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0 c /A< 33+n).  (3.14) 

Although (3.13) is not an independent condition, it is useful to have it in this form. 
Equation (3.9) is an autonomous first-order equation for Z((;) as a function of V(g)  

which has been studied extensively in the context of gasdynamics. Guderley (1942), 
Courant & Friedrichs (1948) and Sedov (1959), among many others, developed a 
powerful phase-plane method for studying the properties of the solutions of these 
types of equation. It is this method that we will use to investigate the existence and 
behaviour of the similarity solutions to our problem, the novel features of which are 
the boundary conditions (3.10)-(3.12). 

A t  this point it is convenient to study the two cases n = 0 and n = 1 separately. 

3.1. Planeflow (n = 0) 
I t  turns out that the boundary condition at (; = 0 plays an important role in our 
analysis. Since this point corresponds to the point V = o0,Z = a t  in the (2, V)-plane 
it is useful to make the transformation 

1 V = -  
V ’  

(3.15) 

(3.16) 

which maps this point onto the line V, = 0 in the (W, V)-plane. In terms of W and 
V,, (3.8) and (3.9) become, with 7 = (;/&, 

and 

For completeness, the boundary conditions (3.8)-(3.10) become 

V,(1) = 1 ,  

W(1) = p2, 
and the volume integral condition becomes 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The phase plane of (3.17) has two basic topologies depending on whether 0 < p < 1 
(figure 2) or 1 < p c X (figure 3). The only singular point of relevance is marked A 
in both cases and is located a t  V, = +, W = 4. The front boundary condition (3.20) 
and (3.21) is the point V, = 1, W = $. The other boundary condition (3.19) is applied 
at 7 = 0 on the line V, = 0 where it can be shown that V, - Kr](K += 0) as r + O  along 
an integral curve cutting the W-axis. The arrows in the figures indicate the direction 

t This is only true for a + 0. For a = 0 the corresponding point is V = 1,Z = co (see Grundy 
& Rottman 1985). 
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FIGURE 2. The (V,, W)-phaae plane for plane flow (n = 0 )  for 1 < a < 00, (0 < p < 1). The curve 
4 CC'B is a possible discontinuous solution, with a hydraulic jump from C to C' and /3 % 1 at 4. 

FIGURE 3. The (6 ,  W)-phase plane for plane flow (n = 0 )  for 0 < a < 1 (1 < p < t ) .  
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of increasing 7 and the dotted line through A is the so-called critical line, 
W = 1/( V,- 1)2, across which 7 changes direction. 

Let us first look at  the case 0 < p < 1 (figure 2), corresponding to 1 < a < co. 
Consider a point F( V, = 1, W = $1 representing the current front. To be a solution 
of our problem, the integral curve from F has to reach V, = 0 (where 7 = 0). From 
the figure it is clear that if F = Fz is below F,( V, = 1, W = &) then /3 < Po, and the 
integral curve exists and is unique. For F = Fl above F, but below the line W = 4, 
then P > Po, and no integral curve from F can reach V, = 0, and so no solution exists. 
Lastly, if F is above W = 4, every integral curve from F passes through the singular 
point A (f,4), which is a node, and we then have an infinite choice of curves from A 
reaching V, = 0. 

In  summary, when 0 < /3 < Po a similarity solution exists and is unique, when 
8, < P < 2 there is no similarity solution, and when /3 > 2 a similarity solution exists 
but is not unique. The critical value of Po@) can be found numerically by integrating 
(3.17) from the point B(0,l)  to V, = 1 where W = A. A plot of Po obtained in this 
way is shown in figure 4; interestingly, Po is always less than one. 

We now turn to the case 1 < p < a (figure 3), which corresponds to 0 < a < 1. The 
singular point A is now a saddle point and it is clear that if the point P representing 
the current front is below W = 4 in the first quadrant, then a single integral curve 
through P will always reach V, = 0. On the other hand if P lies above W = 4, then 
no integral curve can possibly reach V, = 0. So we conclude that, for 1 < p < f, we 
have a unique similarity solution if P < 2 and no solution for /3 2 2. Grundy & 
Rottman (1985) showed that this is also true when a = 0. 

Finally, if p = l(a = 1 )  then all solutions collapse onto W = $. This gives the 

(3.23) trivial result 

(3.24) 

h(z ,  t )  = h, = P-i(qE/g’)$, 

u(2, t )  = u, = P(g’qJ4 

.f(4 = UOt, 

which is the solution noted by Britter (1979). 
(3.25) 
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FIGURE 5. Cf as a function of a. Here p = /&(a) for a 2 1 and /3 = 1.0 for 0 < a < 1.  The symbols 
are experimental measurements (the vertical bars indicate the scatter in these measurements) : 0 ,  
Huppert & Simpson (1980) and J. E. Simpson (private communication); 0, Maxworthy (1983) and 
T. Maxworthy (private communication). 
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FIQURE 6. The scaled fluid depth H ( 7 )  for various values of a. 
I= l . O f o r O < a <  1 andB=P,,(a)foraa 1.  
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FIGURE 7. The scaled fluid speed U(7)  corresponding to the values of a and in figure 6. 

The value of cr is most easily found by recasting (3.17) and (3.18) with W(7) and 
Ul(7) = V,/r as the dependent variables. Starting a t  the current front where 
W(1) = ,P and Ul(l)  = 1, we numerically integrate this equation to obtain W(0)  and 
Ul(0). It then follows from (3.19) that 

(3.26) 

which is a function of a and j3. A plot of Cf as a function of a is shown in figure 5.  
Sample solutions for the non-dimensional fluid depth H ( c )  are plotted in figure 6 

for various values of a in the domain 0 < a < 3. For 0 < a < 1 we have set = 1.0 
and for a > 1 we have used j3 = /3,(a). The corresponding solutions for the non- 
dimensional fluid speed U(c)  are plotted in figure 7. Note that H ( g )  is concave for 
0 < a < 1 and convex for a > 1 and that U(y)  increases or decreases monotonically 
with 5 according to whether a 5 1. 

As we stated in the Introduction, the available experimental evidence is consistent 
with the conclusion of dimensional analysis, as given by (3.3), that the current length 
eventually becomes proportional to The experiments of Huppert & Simpson 
(1980) and Maxworthy (1983) also include measurements of the constant of propor- 
tionality &. We have plotted these measurements (for those cases in which viscous 
effects are unimportant) in figure 5 along with the values we obtained for this 
parameter from our similarity solutions. For this comparison, we have assumed in 
our similarity solutions that the empirical parameter /3 = 1 when a < 1 and B = &(a) 
when a > 1. 

Although the agreement is quite reasonable, the experimental measurements cover 
a rather limited range of the parameters. Also, it is somewhat troubling that our 
simiIarity solutions do not allow us to choose arbitrarily a value of /3 near unity when 
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FIGURE 8. The ( V ,  2)-phase plane for axisymmetric flow (n = 1)  with a = 1 .  

a > 1. From physical reasoning and experimental observations we expect /3 x 1. It 
may be possible, although we have not investigated this possibility in any detail, to 
obtain solutions for arbitrary B x 1 if we allow them to be discontinuous. Such a 
solution is illustrated in figure 2. Starting at the front position 4 (for which 
/3 > /3,,(a)), we move backwards in 7 along the integral curve to a point marked C ,  
say. Then the solution jumps to a point marked C' on another integral curve. The 
points C and C' are chosen such that 7 has the same value at both points and the 
changes in the dependent variables satisfy some specified hydraulic- jump conditions, 
such as those proposed by Garvine (1984). The solution now proceeds backwards in 
7 along the new integral curve to the boundary V, = 0. 

Finally, we remark that the solutions (3.1)-(3.4) are only consistent with our 
assumptions about the physical problem when 0 < a < 4. When a > 4 these expres- 
sions indicate that the ratio of the current's thickness to its length increases with 
time, violating our assumptions in using the shallow-water equations to describe the 
motion. In  addition, (3.3) gives the acceleration of the front increasing with time when 
a > 4, which violates our assumption of quasi-steadiness in imposing the front 
boundary condition (2.5). 

3.2. AxisymmetricJlow (n = 1)  
The situation for axisymmetric flow is somewhat different to that for plane flow. To 
see why this is we first of all look at  the (2, V)-phase plane for n = 1 which is typically 
shown in figure 8, the region of interest being the first quadrant with V 2 1, V = 1 
representing the current front. The important singular point is at V = 00, 2 = 00 

where 7 = 0. Near this point for n = 1 and a > 0, with 
1 1 Zl=- and V l = -  
2 V' 

(3.8) may be approximated by 

12 

(3.27) 

F L Y  169 
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I 

k I ’  
FIGURE 9. Behaviour of the integral curves near V = co, 2 = a) for the axisymmetric case 

n = l , a  > 0. 

which can be integrated to give 

2, q = K(2 q + ZJ2, (3.28) 

with an arbitrary constant K ,  positive for curves in the first quadrant. The explicit 
one parameter family of curves represented by (3.28) is shown in figure 9. We conclude 
from this figure that no integral curve reaches V = Z = 00 from any point in the first 
quadrant, in particular from the line V = 1 , Z  > 0. Thus for axisymmetric flow with 
a > 0 no similarity solution to our problem exists in 0 < 7 < 1 that satisfies the 
boundary condition on the axis of symmetry. As shown in a previous paper, Grundy 
& Rottman (1985), a unique similarity solution does exist for a = 0 since in that event 
7 is zero a t  the singular point V = 1 , Z  = 00 which is accessible from any point on 
V =  1. 

We now consider the numerical solution that Chen (1980) obtained for the case with 
a = 1. He solved the equations for H and U by starting a t  the front (7 = 1) and 
numerically integrating backwards in 7. The solution he obtained for H is shown 
schematically in figure 10 as a dashed line. His solution has H+O and U +  m as 7 +qo 
for some ?lo > 0. Clearly this solution cannot satisfy the boundary condition at  7 = 0 
and furthermore does not imply the correct singular behaviour of the solution. We 
can show this by examining the phase plane in figure 8. If we follow an integral curve 
from the front (marked F) we see that this must meet the critical line a t  some point 
S,, say, where 7 = qs, Z = Z,, and V = V,  with 2, = (1 - V$. Clearly H(7,)  and U(7,) 
are finite but from (3.8), (3.9) and (3.6), (3.7) the derivatives (Wldy), and (dU/dy), 
are unbounded. An examination of the equations reveals a square-root singularity 
with H ( 7 )  and U ( 7 )  having the expansions 

H ( 7 )  = H(7s)  +OU7 -7s)% (3.29) 

U(7)  = U(7s)+0{(7-7s)% (3.30) 
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The solutions for H corresponding to the integral curves in the phase plane are shown 
schematically by the solid lines in figure 10. Both H(r]) and U(7)  are double-valued 
functions of r] for r] > rlS with infinite slope at r] = qS. Chen’s numerical method 
appears unable to handle the infinite slope at r] = qS, and produces a spurious 
singularity near this point. 

As in the case of plane geometry, we can construct discontinuous solutions for the 
axisymmetric case, although it should be kept in mind that these solutions cannot 
satisfy the boundary condition at the axis of symmetry. Such a solution is shown 
schematically in figure 8, where a hydraulic jump connects the point marked A to 
the point marked B, and the corresponding solution for H i s  shown schematically in 
figure 10. Finally, the form of the similarity solutions (3.1)-(3.4) shows that they are 
inconsistent with our assumptions about the physical problem when a > 6, for the 
same reasons as in the case of plane geometry. 

4. Summary and discussion of results 
For plane flow we have shown that continuous similarity solutions of our model 

problem exist and are unique if the front parameter /3 is suitably restricted. 
Specifically, 0 < /? < 2 when 0 < a  < 1 and 0 < /3 < po(a) when a > 1. From 
physical reasoning, we expect p to have a value near unity. Therefore, the non-unique 
solutions we obtained for a > 1 are inappropriate in the physical situation since they 
exist only when > 2. A similar comment may be relevant to some of the unique 
solutions we obtained for a > 1 with 0 < p < Bo(a), since in general Bo(a) < 1 (as 
shown in figure 4), although the small number of experimental results that are 
available seem to indicate that /?xpo(cc) for a not too much greater than one. 
Another possibility is the existence of discontinuous solutions that satisfy the front 
condition for a prescribed value of /3. The similarity solutions of the shallow-water 
equations are only appropriate for the physical problem when 0 < a < 4. 

For axisymmetric flow we have shown that no similarity solution of our model 
equations satisfying the boundary conditions on the axis of symmetry exists for 
a > 0, whatever the value of B. The accumulated theoretical and experimental results 
seem to indicate that when a > 0 the source conditions remain important no matter 

12-2 
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how large the spreading pool of heavy fluid becomes. This excludes the possibility 
of a similarity solution. However, much more work needs to be done before any 
definite conclusions can be made. 

One final point should be mentioned concerning the volume input function &(t ) .  
Since we are primarily concerned with the large-time behaviour then we would expect 
the similarity solutions to  be a valid approximation in this limit for volume input 
functions, 

&(t )  - qatY a s  t - t o o .  

The results of the present paper are appropriate only when the motion is 
determined by a balance between the inertia of the heavy fluid and the driving 
buoyancy force. Huppert (1982) has shown from order-of-magnitude arguments that 
(for large enough time) the viscous drag due to  the rigid horizontal boundary becomes 
more important than inertia when a < a, = a(7 + 5n). He has also shown the (at first 
thought, surprising) result that  when a > a, viscous drag is more important than 
inertia for small time but inertia eventually dominates viscous drag for large time. 
When 01 = a, inertia is always dominant if J 4 1 and viscous drag is always dominant 
if J %  1,  where 

J = (v(3+n)gr2(l+?&) 4 (3-2?&)/(3+?&) 
/ q a C )  

is a dimensionless number. Huppert (1982) also estimated the time, 

t ,  (q4/g'2(l+n)v(3+n) 1/(7+6?&-4a) 
a 1 9 

when inertia and viscous drag are comparable. We expect our results to  be valid for 
times large compared with a characteristic timescale based on the source conditionst 
but small compared with t ,  if a < a, or large compared with t ,  if a > a,. 

The self-similar solutions for the case when the motion is determined by a balance 
between viscous drag and the driving buoyancy force have been determined by 
Huppert (1982) for all a 2 0 and for both plane and axisymmetric flow. It is 
interesting that in contrast to the present results the viscous-buoyancy problem 
admits similarity solutions for the full range of the parameters. Experiments on the 
viscous-buoyancy problem have been reported by Didden & Maxworthy (1982), 
Huppert (1982) and Maxworthy (1983), and their results compare fairly well with 
the similarity solutions. 

We thank T. Maxworthy and J. E. Simpson for kindly providing us with some 
additional information about their experimental measurements. J. W. R. acknowl- 
edges financial support from the UK Health and Safety Executive under contract 
1918/01.01. 
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